您好,欢迎来到华拓科技网。
搜索
您的当前位置:首页y=f(x)在x=x0处可导是什么意思?

y=f(x)在x=x0处可导是什么意思?

来源:华拓科技网

有网友碰到这样的问题“y=f(x)在x=x0处可导是什么意思?”。小编为您整理了以下解决方案,希望对您有帮助:

解决方案1:

1、函数f(x)在点x0处可导,知函数f(x)在点x0处连续。

2、函数f(x)在点x0处可导,知函数f(x)在点x0存在切线。

3、函数f(x)在点x0处可导,知函数f(x)在点x0处极限存在。

扩展资料:

1、可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。

2、函数可导的条件:

如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

3、可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

参考资料:百度百科-可导

解决方案2:


由“函数y=f(x)在x=x0处连续”,不能推出“函数y=f(x)在x=x0处可导”,
例如函数y=|x|在x=0处连续,但不可导.
而由“函数y=f(x)在x=x0处可导”,可得“函数y=f(x)在x=x0处连续”.
故“函数y=f(x)在x=x0处连续”是“函数y=f(x)在x=x0处可导”的必要不充分条件,
故选B.



Copyright © 2019- huatuo6.cn 版权所有 赣ICP备2024042791号-9

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务