lecode每日一题
3162. 优质数对的总数 I
给你两个整数数组 nums1 和 nums2,长度分别为 n 和 m。同时给你一个正整数 k。
如果 nums1[i] 可以被 nums2[j] * k 整除,则称数对 (i, j) 为 优质数对(0 <= i <= n - 1, 0 <= j <= m - 1)。
返回 优质数对 的总数。
示例 1:
输入:nums1 = [1,3,4], nums2 = [1,3,4], k = 1
输出:5
解释:
5个优质数对分别是 (0, 0), (1, 0), (1, 1), (2, 0), 和 (2, 2)。
示例 2:
输入:nums1 = [1,2,4,12], nums2 = [2,4], k = 3
输出:2
解释:
2个优质数对分别是 (3, 0) 和 (3, 1)。
int numberOfPairs(int* nums1, int nums1Size, int* nums2, int nums2Size, int k) {
int count=0;
for(int i=0;i<nums1Size;i++){
for(int j=0;j<nums2Size;j++){
if(nums1[i]%(nums2[j]*k)==0){count++;}
}
}
return count;
}
如果 nums1[i] 可以被 nums2[j] * k 整除,则称数对 (i, j) 为 优质数对(0 <= i <= n - 1, 0 <= j <= m - 1)。
返回 优质数对 的总数。
示例 1:
输入:nums1 = [1,3,4], nums2 = [1,3,4], k = 1
输出:5
解释:
5个优质数对分别是 (0, 0), (1, 0), (1, 1), (2, 0), 和 (2, 2)。
示例 2:
输入:nums1 = [1,2,4,12], nums2 = [2,4], k = 3
输出:2
解释:
2个优质数对分别是 (3, 0) 和 (3, 1)
提示:
1 <= n, m <= 105
1 <= nums1[i], nums2[j] <= 106
1 <= k <= 103
方法一:枚举倍数
思路与算法
分别统计 nums
1
和 nums
2
的频数。
遍历 nums
2
出现过的数 a,枚举 a×k 的倍数,如果在 nums
1
出现过就可以组成优质数对,更新结果。
返回优质数对的总数。
class Solution {
public:
long long numberOfPairs(vector<int>& nums1, vector<int>& nums2, int k) {
unordered_map<int, int> count, count2;
int max1 = 0;
for (int num : nums1) {
count[num]++;
max1 = max(max1, num);
}
for (int num : nums2) {
count2[num]++;
}
long long res = 0;
for (const auto& pair : count2) {
int a = pair.first, cnt = pair.second;
for (int b = a * k; b <= max1; b += a * k) {
if (count.count(b) > 0) {
res += 1L * count[b] * cnt;
}
}
}
return res;
}
};