您好,欢迎来到华拓科技网。
搜索
您的当前位置:首页第四章积分变换法

第四章积分变换法

来源:华拓科技网
习题4.1(p222页)

1:若fx满足付氏积分的条件且为奇函数,试证 f(x)0b()sinxd

2其中b()0f(x)sinxdx 1证明:G()2f(x)eixdx12f(x)[cosxisinx]dx

因为f(x)为奇函数,故必有:

G()12(2i)0f(x)sinxdxi2i220f(x)sinxdx

令b()20f(x)sinxdxG()b()

又因为:f(x)G()eixdG()[cosxisinx]d

由于G()的奇偶性与f(x)的奇偶性相同,故有G()也是奇函数,于是有

f(x)2i0G()sinxd2i0(i2)b()sinxdx0b()sinxdx

2:求下列函数的付氏变换 (1)

sinaxx(a0)

解:由Fourier变换的定义

F[f(x)]F[sinaxxix]sinaxxeixdxeiaxe2ixiaxeixdx

ei(a)xe2ixsin(a)xxdx2[dxsin(a)x2xdx

0sin(a)2x0dx]

0sin(a)xx00,a0sinax2 dxx,a02讨论(i)若a则a0,a0,这时

sinax0F[xsinaxxdxsin(a)xx0dx2

]

a,00,02a,0故有:a; a (ii)若a,则a,02a,00,0sin(a)xx0,0 , dx,02F[sinax]0sin(a)xx0,0 dx20,02

(iii)若a,则

①当0时a0,a0,故有

sin(a)xxsinaxx0dx2,sin(a)xx0dx2

从而F[]0

②当0时,a0,a0

sin(a)xxsinaxx0dx2,sin(a)xx0dx2

从而F[]0

,asinax综上所述: F2,ax0,a

(2)ex,(0) 解:F[ex]22ex2eixdx12bex22[cosxisinx]dx=20ex2cosxdx

根据公式0eax2cosbxdx2e4aa,a0知,

F[ex2]212e422e4

(3)sinx,cosx,(0) 解:令F1()2sinxe2ixdx,F2()cosxeix2ixdx

由于0则有F()F2()iF1()eeixdx

即F()ei(xx)2dxi(x2x)edxi(x2)2i422eedx

令: y(x2),则

2222Feeiy2dy1i4edy=20eiy2dy1ie42ie40eiy2dy

因为iy20dy0cosydyi20sinydy

2由Fourier积分有:i0cosxdx20sinxdx224

22F()e4[24i24]=

[cos(2442)icos(44)]

F1()cos(244),F2()cos(44)

(4)eax,a0

ax解:F[e=2]eaxeixdxeax[cosxisinx]dx

0eaxcosxdx22aa22 (利用分部积分法)。

(5)xeax,a0 解:F[xe2iax2]2xeax2eixdxxeax2ax[cosxisinx]dx

2xeaxsinxdxaiai0sinxde

i2a=ia0eax2cosxdx12e24aa=ae24a

3:已知f()d(x)21xb220ab,求f(x)

解:对上式两边进行Fourier变换有:

F[f()(x)a22d]F[1xb22]

F[f(x)*1xa22]F[1xb22]

F[f(x)]F[1xa22]F[1xb22F[],F(f(x))1xb1xa222]

2F[]而 F[ab1xb22]1beb (ba)F[f(x)]e(ba)ababbaea(ba)bF[1x(ba)22]

f(x)a(ba)b1x(ba)(m)22

4:设F[f(x)]G(),G Fi证明:因为:

F1()0,m0,1,2,,试证明:

nfxGn,n1ix1,2,...

[G()]eix2G()e12dw12ix_eixdG()

12eix121G()1G()(ix)edix12G()eixdixf(x)

又F[G()]12dd2ixG()eddG()

ixF[G()](ix)f(x)

如此做下去会有: Fn1[G(n)()](ix)f(x)

(n)n于是:F[(ix)f(x)]G()

1ixf(x)]5:设F[f(x)]G(),G()d0证明F[G()d

F证明:

1[G()d]12[G()d]eixd2(ix)1(G()d)deix

12(ix)[G()deix(G()d)eixd]

21F[f(x)]ixix11G()eixdf(x)ix

G()d

6、试用Fourier变换方法,求解量子力学中将人遇到的爱里(Airy)方程

u()u()0

解:对方程两边进行Fourier变换,并且F[u()]G() 则有:F[u()]F[u()]0

(i)F[u()]iF[iu()]0,(i)G()iG()0

22即:

dG()diG()0

233G()Ceu()F1i

33[Cei]CF1[e33i]C2e33ieid=

C2ei(33)d

此即原方程的解。 7:设r1rxyz,w422211rr222423证明 (0)

(1)F[]证明:(1)

F12 (2)F[e]22[42]1(2)341222223ei(1x2y3z)d1d2d3

=

4(2)30021012eircoswsinddd

令xcos2101eirxdxd1eireirir0d

sinr01F[]rr42d2r21r

8:试证付里叶光学中的下列Fourier变换公式 (1)F[recr(x)recr(y)]sinc(fx)sinc(fy) (2)F[(x)(y)]sinc(fx)sinc(fy)

w12w2222其中:fx,fy 为频率

11x,x11,x 为三角函数 rect(x)2 为矩形函数,x0,0,其它sincxsinxx为sinc函数

111,x,y证明:(1)rect(x)rect(y)22

0,其它F[rect(x)rect(y)]11212i(1x2y)1rect(x)rect(y)e1i1xi2yi(1x2y)dxdy

2121edxdy212edx21e2dy

212ei1xdx1i1(ei12ei122sin)12sinfxsincfx

1fx1同理21e2i2ydysincfy

F[rect(x)rect(y)]sinc(fx)sinc(fy)

(2)(x)(y)(1x)(1y),x1,y10,其它

F[(x)(y)]11(x)(y)e(1y)dy

1i(1x2y)dxdy

=(1x)e11i1xdxei2y11(1x)[cos1xisin1x]dx(1y)[cos2yisin2y]dy

1112(1x)cos1xdx2(1y)cos2ydy

0010(1x)cos1xdx11110(1x)dsin1x

11[(1x)sin1x10sin1xdy]0cos1x1210cos112

cos11121cos12sin2122121

12sin(1x)cos1xdx2120122sinfx1sinc2(f)

x224fx22同理(1y)cos2ydy0112sinc(fy)

22F[(x)(y)]412sinc(fx)12sinc(fy)sinc(fx)sinc(fy)

2229:将f(x)cosx2要形成Fourier积分。

2解:F[cosx]cos(w244)

F[cosx]122cos(424)G() 12f(x)G()eixdG()[cosxisinx]d

110G()cosxd1cos(424)cosxd

0cos(424)cosxd

习题4.2

1:试用Fourier变换求解上来平面狄氏问题

u0,y0 ( 1)  u(x,0)f(x) (2)limu0 (3)(x2y2)解:让未知函数u(x,y)关于变量x作Fourier变换有 F[u(x,y)]F[f(x)]u(x,y)eixix~(,y) dxuf(x)e~dxf()

对原方程的两边和定解条件两边作Fourier变换有

~d2u2~u0 ( 4)2dy~~u(,0)f() (5) ~u(,y)y0 (6)求解微分方程(4)有

~(,y)AeyBeuy ( 7)

其中A,B得求

将(7)代入(6)有:当0时A0;当0时B0 ~(,y)cey (8) 所以 u~y~(,y)~将(8)代入(5)有:cf(),所以u f()eu(x,y)F11~yy1[f()e]f(x)*F[e]

而F[e12y]12eyeiyd112[0e(yix)d0e(yix)d]

[1yix1yix]yx2y2

u(x,y)yf()(x)y22d

2:试用Fourier变换法求解无界弦的强迫振动

utta2uttf(x,t),x u(x,0)(x)u(x,0)(x)t解:先求元界弦自由振动的初值问题

utta2utt,(x,t0) u(x,0)(x),u(x,0)(x)t对方程两边关于变量x作Fourier变换,并且设

~(),F[(x)]~() ~(,t),F[(x)]F[u(x,t)]u则

~(,t)d2u22~au(,t)2dt ~~~~u(,0)(),ut(,0)()~~()cosat()sinat~(,t)求解得u

au(x,t)F121~(,t)] [u~~()cosateixd12(w)asinateixd

I1I2

~()cosateixd1I1221~()eiate2iate12ixdx

122121[1~()e~i(atx)d12~()e~i(xat)d]e[(xat)(xat)]

I2()a~sinateixd121()eatiiat2aieixd

~12a2[()iei(xat)d2()iei(xat)d]

12a12a[xat()dxat()d]

xatxat()d

u(x,t)(xat)(xat)212axatxat()d

再求无界弦强迫振动解

utta2uxxf(x,t),(x,t0) u(x,0)0,utx,00两边关于变量x作付利叶变换有:

~2~~du,t22au,tf,t2 dt~~u,00,ut,00采用常数变量法得 ~(,t)ut0~f(,)sin[ax(t)]/ad

12所以 ux,t原方程的解为

~u,teitd12at0xatf,dd xat12atxa(t)u(x,t)(xat)(xat)2212axatxat()d[0xa(t)f(,)d]d

6:求解热传导方程utautt(x,t0)的初值问题,已知

2(1)u(x,0)sinx (2)u(x,0)x1

解:(1)将t视为参数,对变量x实施Fourier变换,并且记

~(,t),F[sinx]F[u(x,t)]usinxeix~() dx于是原偏微方程的定解问题变为

~du(,t)22~au(,t) dt~~u(,0)()~()eat ~(,t)解之得u22u(x,t)F221~()e[1at22]sinx*Fx221[eat22]

F1[eat]2at12ate4at

22x22u(x,t)sinx*e4at12ate4atsin(x)d

sinx1at2220e4atcosd

20eaxcosbxdx12eb4aa,a0

u(x,t)sinx1at12eat22ate2at2sinx

(2)将t视为参数,对u(x,t)关于变量x实施Fourier变换,并且记

F[u(x,t)]u(x,t)e2ix~(,t) dxuF[x1]2(x1)eix~() dx原方程及定解条件两边作Fourier变换有

~du(,t)22~au(,t)dt ~()~ut0~()eat ~(,t)解之得: u22u(x,t)F1~()e[u(x)4at2at22](x1)*F21[eat22](x1)*212atx22e4at

12ate(21)dx12at (令u22x2at)

习题4 4(p242页) 1:求是解问题

2u1,(x0,y0)xy u(0,y)y1u(x,0)1解:对变量实施Lap lace变换有 L[u(x,y)]u(x,y)you(x,y)epy~(x,p) dyuL[~(x,p)1 ]pu原方程两边进行拉普拉变换有

L[uxy2]L[1],

~(x,p)1]d[pudx1p

~(x,p)dudx~(x,p)1xc (待求) uc22pp1又u(0,y)y1 两边作拉普拉氏变换有

~(0,p)L[y]L[1]11 u2pp~(x,p)1x11 u22ppp1p2u(x,y)L[1x1p21p]xyy1

2:求解一维半无限的热传导问题。

ua2u(0x)tttu(x,t)0 u(0,t)u0,limxu(x,0)0,0x解:让未知函数关于tt实施Laplace变换,并且记 L[u(x,t)]0u(x,t)ept~(x,p) dtu于是对原方程和定解条件的两边进行Laplace变换有

~(x,p)d2up~u(x,p)022dxa ~(0,p)u0,limu~(x,p)0upx~(x,p)ce求解知u1xpaxpc2eax,c1,c2得求

~(x,p)0c0 limu2~(0,p)又uu0p,c1u0p

~(x,p)uu0ppaex

pau(x,t)L[1u0pex]u0erfc(x2at)

3:求解杆的振动问题。

utta2uxx(0xl,t0) ( 1)u(0,t)0,Eux(l,t)Asint (2) u(x,0)0,u(x,0)0 (3)t解:让未知函数关于变量t作laplace变换,并且记 L[u(x,t)]0u(x,t)ept~(x,p) dtu2~2~L[utt]pu(x,p)pu(x,0)ut(x,0)pu(x,p)

L[utt]2~du(x,p)dx2

对方程(1)的两边进行Laplace变换有

L[utt]L[auxx]

2~2du(x,p)~ pu(x,p)a2dx22~du(x,p)2即:

dx2(papa2~)u(x,p)0

~(x,p)CeuxDepax (4),其中C,D待求

对边界条件(2)的两边进行laplace变换有:

~(0,p)0 (5) L[u(0,t)]0得uL[Eux(l,t)]L[Asint]得E~(l,p)dudxAL[sint]

~(l,p)dudxAEL[sint]A22Ep (6)

~(x,p)cF(p)于是得uaAEF(p)

其中F(p)1p(p)22sh(ch(xalap)

p)sh(xapp)limp0xach(1xap)注意到:limxap0

所以p0是函数Fp的正侧点

Fp只有一阶极点;pi,0,i,pk(k1ai),k0,1 2l容易计算:

sinRes[epiptxa2sintF(p)Res[epiptF(p)]ptcosla

Res[eF(p)]Res[eF(p)]

ppn1ppn1pt16l2(1)n2l2l n1,2,3, 22222(2n1)(4l(2n1)a)sin(2n1)tsin(2n1)tu(x,t)CL[F(p)] xsinsint2aA16lalE2cosan2l2l (1)22222(2n1)[4l(2n1)a]n11sin(2n1)atsin(2n1)t4.求解定解问题:

ua2ucost,(0x,t0) (1)ttxx u(x,0)0,ut(x,0)0 (2)u(0,t)0,limu0 (3)xx解:记Lu(x,t)0u(x,t)ept~(x,p),Lcostdtu0costept~dtf(p)

对方程的两边及初边条件两边进行Laplace变换有

~2~(x,p)d2up~f(p)u(x,p) (4)222dxaa~ u(0,p)0 (5)~(x,p)0 (6)limuxx方程(4)的通解为

~(x,p)ceaceu12pxpax~f(p)a2

由边界条件(6)有c10,所以

~(x,p)ceu2pax~f(p)p2

~f(p)p2又由(5)c2~f(p)p20 c2

~f(p)~u(x,p)2ppxa1e 注意到f(p)Lcost~pp22

~(x,p)u1pp22px1ea11p22pp2x1eap 2而L11pp1221p11L22pp2121costsin22t2

1u(x,t)L2pp211L2pp2epax22sin2t1L22pp12epax 由Laplace变换的位移性质有

LfteL1pF(p)

epF(p)ft

1L2pp12epax2sin22xt 2a当txa时 u(x,t)222sin22t22sin2xt 2a当txa时 u(x,t)2sin22t

5.长为l的均匀细杆,一端保持零度,另一端保持定恒定温度u0,若初始温度也是零,求杆中的温度分布

解:该问题的泛是方程为

uta2uxx 0xl, t0 u(x,0)0u(0,t)u,u(l,t)00~(x,p) 关于变量t作Laplace变换,并见证Lu(x,t)u~(x,p)a则 pu2~du(x,p)2~du(x,p)2dx2

整理即

dxpa2p~u(x,p)0 2apax~(x,p)CeuxDe C,D待求 (1)

~(0,p)u0 (2) Lu(0,t)Lu0 up~(l,p)0 (3) Lu(l,t)L0 u由(1),(2),(3)有

u0CDpplaCeDe

pal0求解得

Ceu0ppalepallu0pepalu0pepap2shal,Deppalealu0paplpealep2shal

~(x,p)uu0epalpp2pshalpaepalu0ealp2pshalshepal

pau0psh11ep2lashpaxlpea(lx)u0p(lx)lpsha

令F(p)1p(lx)lpsha

~(x,p)uF(p) u0u(x,t)L1u0F(p)u0L1F(p)

psh(lx)1au0L

pshla6.试用Laplace变换求解无界弦的受迫振动问题:

utta2uxxf(x,t) x,t0 (1) u(x,0)(x)u(x,0)(x) (2)t解:对时间变量t进行laplace变换,记 Lu(x,t)Lf(x,t)0u(x,t)ept~(x,p) dtu~dtF(x,p)

0f(x,t)ept对方程的两边进行laplace变换有

~dudx2pa22~~(x,p)1p(x)(x)Fu(x,p) (3) 2a利用常数变易法可得其解为

~(x,p)AeupaxBepax12apeax1pepax~pF,pd

12aepax1ppeax~pF,pd

又ux有限

有限

~(x,p)ux代入(4)式有AB0

于是

~(x,p)1u2a12ax1p1pep(x)/a~pF,pd

xep(x)/a~pF,pd

1x1p(x)/ade2apx1pxep(x)/ad

pd

~F,pd

1x1p(x)/aepd2ap1pep(x)/a1x1p(x)/a~F,pde2app(x)/ax1pep(x)/a因为L11pe1,xat1,xat11p(x)/a, Le0,xat0,xatp11p(x)/aLedxpx1pxep(x)/adxatxatd

1p(x)/aed而Lpxp11pep(x)/ad

txatxatda(xat)(xat)

x11p(x)/a~LeF,pdxp1pep(x)/a~F,pd

t0xa(t)f,pdd xa(t)12u(x,t)(xat)(xat)12axatxatd12at0xa(t)f,dd

xa(t)

习题4,3(P238)

1:求下列函数的拉氏变换

(1)f(t)e2t 解:Lf(t)12p0e2teptdt12p0e2ptdt

e2pt0 其中Rep2

(2)f(t)t2tet 解:Lf(t)Ltte2tLtLte2t2!p3Lte

tLte111t0teetptdt10te1ptdt

0p0tde1ptte1pt1p10e1ptdt

1p0e1ptdtp112e1pt01p132

Ltte2t2p3p122p4p2pp32p12

(3)f(t)tcosattsinat 解:Lf(t)LtcosatLtsinat 根据源函数的微分性质

ddpLf(t)Ltf(t)

22dppaLtcosatLcosat2222dpdppapad2

同理Ltsinat2app22a22 Rep0

Lf(t)pa2ap22p2ta22

(4)f(t)esin6t5e2t

解:Lf(t)Le2tsin6t5Le2t Le2tsin6t0e2tsin6te1ptdt

(p2)t0sin6te(p2)tdtp200sin6tde

sin6te(p2)tp26160cos6te(p2)tdt

p220cos6te(p2)t

6p262cos6te(p2)t060sin6te(p2)tdt 36p22016sin6te(p2)tdt06p22p22Le2tsin6t

362t1Lesin6t2p26p22

Le2tsin6t6p4p402Lf(t)Le6p4p40n22tsin6trLe5p22t

25p14p188p24p40p2

(5)f(t)teattnatn1

n1解:Lf(t)LteLte1tLt10neatLt

n1nat00tenateptdttenpatdt

0n1patpantdenpattndepatpann1n0tedt

pan0tn1epatdtpa20tdepat

pa2tn1epat00(n1)tn2epatdt pa2n(n1)0tn2epatdtn(n1)2pa

n0epatdt

n!pan1epat0n!pan1Lf(t)n!pan1(n1)!pn(n1)!npnpan1pan1pn

2.利用性质或查表求下列函数的拉氏逆变换。 (1)解:

p8p26p211111L2LL6L222p4p5(p2)1(p2)1(p2)1p8p4p52

e2tcost6e2tsint

(2)

pp12a22 其中a0

p解:L22pa2tsinat 2a3.利用反三演公式(或展开式)计算下列函数的拉氏逆变换 (1)F(p)1p(pa)(pb)1p(pa)(pb)Ap

解:BpaCpb

比较复数得

A1ab, B1aab, C1bab

L1F(p)1AL111111BLCL ppapb1abaabeat1babebt

(2)F(p)1p22p22

解:Lt1F(p)t111ttLesint*esint 22p11p110e12sinetsin(t)dt0esinsin(t)d

etcostsint

4.试用laplace变换求解下面的问题

yy3e2t(1)

y02解:对方程的两边进行lap lace变换

L[yy]L[3e2t]

2tL[y]L[y]3L[e]

1p21p21p1PL[y]y(0)L[y]3

L[y]3(p1)(p2)11p12t

y(t)L[1p2]L[1]ee

ty4y3yet(2)

y(0)y(0)1解:两边作Laplace变换有

L[y]4L[y]3L[y]L[et]

PL[y]py(0)y(0)4PL[y]y(0)23L[y]1p1

L[y](p4p3)p521p1

L[y]1p4p32(p6p6p12)p6p6(p1)(p3)22(p1)1(p1)(p3)2

1(p1)(p3)12141(p1)(p3)1412212p11(p1)2[11P3]114p3114p11122(p1)y12ete3te3tetL[1]

1414et1414e3t1212L[11p1et1p1]

ettte3tet

ee14tt0e14e3t(t)dtt0eeedtett

yee12te

(3)y2yy4y(0)1,y(0)2,y(0)2

解:两边作Lap lace变换有

L[y]2L[y]L[y]L[4]

pL[y]py(0)py(0)2[pL[y]py(0)y(0)]pL[y]y[0]3224p

即(p32p2p)L[y]p22p22[p2]14p

(p2pp)L[y]324pp524p5pp3

L[y]p5p4p(p2p1)24223p5p4p(p1)4p(p1)2322

1pp(p1)p(p1)22

L[11p]1

L[12p(p1)4]2L[111pp12]2[1*e]2e0tttd2(e1)

tL[1p(p1)2]L[1p(p1)2p(p1)]2(e1)*2(e1)

tt4(et2e2t)

1ttL[4p(p1)2]L[12p(p1)2p1]2(e1)*2e4(ete1)

tttty(t)4(ete1)

tt(4)y2zf(t)yzz0 其中y(0)y(0)0z(0)z(0)0

解:方程两边作Laplace变换有:

L[y]ZL[z]L[f(t)] L[y]L[z]L[z]0即pL[y]y(0)2[pL[z]z(0)]L[f(t)]pL[y]py(0)y(0)[pL[z]pz[0]z[0]22L[z]0

pL[y]2pL[z]L[f(t)]整理即为2 2pL[y](p1)L[z]0求得L[y]p1p(p1)pp12222L[f(t)],L[z]pp12L[f(t)]

z(t)L[1L[f(t)]]costf(t)cosf(t)d

0tyL[1p1p(p1)2L[f(t)]]L[(11p2pp12)L[f(t)]]

L[11pL[f(t)]2pp12L[f(t)]]1f(t)(2)costf(t)

t0f(t)d2cosf(t)d0tt0(12cos)f(t)d

5.求解弹簧振子的受迫振动

mx(t)kx(t)f(t) x(0)0,x(0)0解:两边作Lap lace变换有

mpL[x(t)]KL[x(t)]L[f(t)]

2kL[x(t)]L[f(t)]mp2k1L[f(t)]mp2km1mp(2mkm)2mkL[f(t)]

k1mkp(2mkm)2L[f(t)]

kx(t)1mkL[p(21mkm)2L[f(t)]]1mksinkmtf(t)

1mkt0f()sinkm(t)d

6.求解直流电源的RLC电路方程的初值问题

1(t)Ri(t)LiCi(0)EOLt0i()dEo

解:证L[i(t)]0i(t)ept~dtI(p)

对方程的两边进行Lap lace变换有

E0E01~~~L[pI(p)]RI(p)I(p)

LcppE01~~~LpI(p)ERI(p)I(P)

cpp11~I(p)[LpR]E0(1)

cpp1p~I(p)E0(1)1E0(p1)L(p2LpRRLcpp1LC

)E011~i(t)L[I(p)]L[Lp1p2RLp1LC]

P2RLP1LC4LC(pR22L)(1LCR224L)

讨论:当R2时(1LCR224L)0

i(t)E0LL[p21p1RLp1LC]E0LL[1p1(pR2L)2]

p1(pR)2pR2L(1R)2R2L)1pR2L1(p1R2LR2LR2L

)2L[12Lp1R2L)2(p]L[12L1p(pR2LtR2Lt](1R2L)L[1p1pR2LR2L]

e(1R2LR2L)eR2LteR2LeR2Lt(1R2Lt)e0tR2Le(t)d

eR2Lt(1)teR2Lt[1(1R2LR2L)t]eR2L

当R24LC时i(t)E0L[1(1)t]eR2Lt

同理可讨论R24LC及R24LC

7.若F(p)L[f(t)],试证像函数的微分性质

L[(t)f(t)]Fn(n)(p)

证明:由Lap lace变换的意义 F(p)0f(t)eptdt

上式两边对p求等

dF(p)dp0f(t)(t)eptdt0(tf(t))eptdtL[tf(t)]

即F(p)L[(t)f(t)] 如此继续做下去,可得:

F(n)(p)ddpnn0[f(t)ept]dt0(t)f(t)enptdtL[(t)f(t)]

n即L[(t)nf(t)]F(n)(p) [证毕]

8.若F(p)L[f(t)]且F()d(Rep0)收敛,证明像函数的积分性质

pL[f(t)t]pF()d

证明:F()d(f(t)ettdt)df(t)[ettd]dt

pp00f(t)eptdtL[f(t)ott]

p证毕

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo6.cn 版权所有 赣ICP备2024042791号-9

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务