1:若fx满足付氏积分的条件且为奇函数,试证 f(x)0b()sinxd
2其中b()0f(x)sinxdx 1证明:G()2f(x)eixdx12f(x)[cosxisinx]dx
因为f(x)为奇函数,故必有:
G()12(2i)0f(x)sinxdxi2i220f(x)sinxdx
令b()20f(x)sinxdxG()b()
又因为:f(x)G()eixdG()[cosxisinx]d
由于G()的奇偶性与f(x)的奇偶性相同,故有G()也是奇函数,于是有
f(x)2i0G()sinxd2i0(i2)b()sinxdx0b()sinxdx
2:求下列函数的付氏变换 (1)
sinaxx(a0)
解:由Fourier变换的定义
F[f(x)]F[sinaxxix]sinaxxeixdxeiaxe2ixiaxeixdx
ei(a)xe2ixsin(a)xxdx2[dxsin(a)x2xdx
0sin(a)2x0dx]
0sin(a)xx00,a0sinax2 dxx,a02讨论(i)若a则a0,a0,这时
sinax0F[xsinaxxdxsin(a)xx0dx2
]
a,00,02a,0故有:a; a (ii)若a,则a,02a,00,0sin(a)xx0,0 , dx,02F[sinax]0sin(a)xx0,0 dx20,02
(iii)若a,则
①当0时a0,a0,故有
sin(a)xxsinaxx0dx2,sin(a)xx0dx2
从而F[]0
②当0时,a0,a0
sin(a)xxsinaxx0dx2,sin(a)xx0dx2
从而F[]0
,asinax综上所述: F2,ax0,a
(2)ex,(0) 解:F[ex]22ex2eixdx12bex22[cosxisinx]dx=20ex2cosxdx
根据公式0eax2cosbxdx2e4aa,a0知,
F[ex2]212e422e4
(3)sinx,cosx,(0) 解:令F1()2sinxe2ixdx,F2()cosxeix2ixdx
由于0则有F()F2()iF1()eeixdx
即F()ei(xx)2dxi(x2x)edxi(x2)2i422eedx
令: y(x2),则
2222Feeiy2dy1i4edy=20eiy2dy1ie42ie40eiy2dy
因为iy20dy0cosydyi20sinydy
2由Fourier积分有:i0cosxdx20sinxdx224
22F()e4[24i24]=
[cos(2442)icos(44)]
F1()cos(244),F2()cos(44)
(4)eax,a0
ax解:F[e=2]eaxeixdxeax[cosxisinx]dx
0eaxcosxdx22aa22 (利用分部积分法)。
(5)xeax,a0 解:F[xe2iax2]2xeax2eixdxxeax2ax[cosxisinx]dx
2xeaxsinxdxaiai0sinxde
i2a=ia0eax2cosxdx12e24aa=ae24a
3:已知f()d(x)21xb220ab,求f(x)
解:对上式两边进行Fourier变换有:
F[f()(x)a22d]F[1xb22]
F[f(x)*1xa22]F[1xb22]
F[f(x)]F[1xa22]F[1xb22F[],F(f(x))1xb1xa222]
2F[]而 F[ab1xb22]1beb (ba)F[f(x)]e(ba)ababbaea(ba)bF[1x(ba)22]
f(x)a(ba)b1x(ba)(m)22
4:设F[f(x)]G(),G Fi证明:因为:
F1()0,m0,1,2,,试证明:
nfxGn,n1ix1,2,...
[G()]eix2G()e12dw12ix_eixdG()
12eix121G()1G()(ix)edix12G()eixdixf(x)
又F[G()]12dd2ixG()eddG()
ixF[G()](ix)f(x)
如此做下去会有: Fn1[G(n)()](ix)f(x)
(n)n于是:F[(ix)f(x)]G()
1ixf(x)]5:设F[f(x)]G(),G()d0证明F[G()d
F证明:
1[G()d]12[G()d]eixd2(ix)1(G()d)deix
12(ix)[G()deix(G()d)eixd]
21F[f(x)]ixix11G()eixdf(x)ix
G()d
6、试用Fourier变换方法,求解量子力学中将人遇到的爱里(Airy)方程
u()u()0
解:对方程两边进行Fourier变换,并且F[u()]G() 则有:F[u()]F[u()]0
(i)F[u()]iF[iu()]0,(i)G()iG()0
22即:
dG()diG()0
233G()Ceu()F1i
33[Cei]CF1[e33i]C2e33ieid=
C2ei(33)d
此即原方程的解。 7:设r1rxyz,w422211rr222423证明 (0)
(1)F[]证明:(1)
F12 (2)F[e]22[42]1(2)341222223ei(1x2y3z)d1d2d3
=
4(2)30021012eircoswsinddd
令xcos2101eirxdxd1eireirir0d
sinr01F[]rr42d2r21r
8:试证付里叶光学中的下列Fourier变换公式 (1)F[recr(x)recr(y)]sinc(fx)sinc(fy) (2)F[(x)(y)]sinc(fx)sinc(fy)
w12w2222其中:fx,fy 为频率
11x,x11,x 为三角函数 rect(x)2 为矩形函数,x0,0,其它sincxsinxx为sinc函数
111,x,y证明:(1)rect(x)rect(y)22
0,其它F[rect(x)rect(y)]11212i(1x2y)1rect(x)rect(y)e1i1xi2yi(1x2y)dxdy
2121edxdy212edx21e2dy
212ei1xdx1i1(ei12ei122sin)12sinfxsincfx
1fx1同理21e2i2ydysincfy
F[rect(x)rect(y)]sinc(fx)sinc(fy)
(2)(x)(y)(1x)(1y),x1,y10,其它
F[(x)(y)]11(x)(y)e(1y)dy
1i(1x2y)dxdy
=(1x)e11i1xdxei2y11(1x)[cos1xisin1x]dx(1y)[cos2yisin2y]dy
1112(1x)cos1xdx2(1y)cos2ydy
0010(1x)cos1xdx11110(1x)dsin1x
11[(1x)sin1x10sin1xdy]0cos1x1210cos112
cos11121cos12sin2122121
12sin(1x)cos1xdx2120122sinfx1sinc2(f)
x224fx22同理(1y)cos2ydy0112sinc(fy)
22F[(x)(y)]412sinc(fx)12sinc(fy)sinc(fx)sinc(fy)
2229:将f(x)cosx2要形成Fourier积分。
2解:F[cosx]cos(w244)
F[cosx]122cos(424)G() 12f(x)G()eixdG()[cosxisinx]d
110G()cosxd1cos(424)cosxd
0cos(424)cosxd
习题4.2
1:试用Fourier变换求解上来平面狄氏问题
u0,y0 ( 1) u(x,0)f(x) (2)limu0 (3)(x2y2)解:让未知函数u(x,y)关于变量x作Fourier变换有 F[u(x,y)]F[f(x)]u(x,y)eixix~(,y) dxuf(x)e~dxf()
对原方程的两边和定解条件两边作Fourier变换有
~d2u2~u0 ( 4)2dy~~u(,0)f() (5) ~u(,y)y0 (6)求解微分方程(4)有
~(,y)AeyBeuy ( 7)
其中A,B得求
将(7)代入(6)有:当0时A0;当0时B0 ~(,y)cey (8) 所以 u~y~(,y)~将(8)代入(5)有:cf(),所以u f()eu(x,y)F11~yy1[f()e]f(x)*F[e]
而F[e12y]12eyeiyd112[0e(yix)d0e(yix)d]
[1yix1yix]yx2y2
u(x,y)yf()(x)y22d
2:试用Fourier变换法求解无界弦的强迫振动
utta2uttf(x,t),x u(x,0)(x)u(x,0)(x)t解:先求元界弦自由振动的初值问题
utta2utt,(x,t0) u(x,0)(x),u(x,0)(x)t对方程两边关于变量x作Fourier变换,并且设
~(),F[(x)]~() ~(,t),F[(x)]F[u(x,t)]u则
~(,t)d2u22~au(,t)2dt ~~~~u(,0)(),ut(,0)()~~()cosat()sinat~(,t)求解得u
au(x,t)F121~(,t)] [u~~()cosateixd12(w)asinateixd
I1I2
~()cosateixd1I1221~()eiate2iate12ixdx
122121[1~()e~i(atx)d12~()e~i(xat)d]e[(xat)(xat)]
I2()a~sinateixd121()eatiiat2aieixd
~12a2[()iei(xat)d2()iei(xat)d]
12a12a[xat()dxat()d]
xatxat()d
u(x,t)(xat)(xat)212axatxat()d
再求无界弦强迫振动解
utta2uxxf(x,t),(x,t0) u(x,0)0,utx,00两边关于变量x作付利叶变换有:
~2~~du,t22au,tf,t2 dt~~u,00,ut,00采用常数变量法得 ~(,t)ut0~f(,)sin[ax(t)]/ad
12所以 ux,t原方程的解为
~u,teitd12at0xatf,dd xat12atxa(t)u(x,t)(xat)(xat)2212axatxat()d[0xa(t)f(,)d]d
6:求解热传导方程utautt(x,t0)的初值问题,已知
2(1)u(x,0)sinx (2)u(x,0)x1
解:(1)将t视为参数,对变量x实施Fourier变换,并且记
~(,t),F[sinx]F[u(x,t)]usinxeix~() dx于是原偏微方程的定解问题变为
~du(,t)22~au(,t) dt~~u(,0)()~()eat ~(,t)解之得u22u(x,t)F221~()e[1at22]sinx*Fx221[eat22]
F1[eat]2at12ate4at
22x22u(x,t)sinx*e4at12ate4atsin(x)d
sinx1at2220e4atcosd
20eaxcosbxdx12eb4aa,a0
u(x,t)sinx1at12eat22ate2at2sinx
(2)将t视为参数,对u(x,t)关于变量x实施Fourier变换,并且记
F[u(x,t)]u(x,t)e2ix~(,t) dxuF[x1]2(x1)eix~() dx原方程及定解条件两边作Fourier变换有
~du(,t)22~au(,t)dt ~()~ut0~()eat ~(,t)解之得: u22u(x,t)F1~()e[u(x)4at2at22](x1)*F21[eat22](x1)*212atx22e4at
12ate(21)dx12at (令u22x2at)
习题4 4(p242页) 1:求是解问题
2u1,(x0,y0)xy u(0,y)y1u(x,0)1解:对变量实施Lap lace变换有 L[u(x,y)]u(x,y)you(x,y)epy~(x,p) dyuL[~(x,p)1 ]pu原方程两边进行拉普拉变换有
L[uxy2]L[1],
~(x,p)1]d[pudx1p
~(x,p)dudx~(x,p)1xc (待求) uc22pp1又u(0,y)y1 两边作拉普拉氏变换有
~(0,p)L[y]L[1]11 u2pp~(x,p)1x11 u22ppp1p2u(x,y)L[1x1p21p]xyy1
2:求解一维半无限的热传导问题。
ua2u(0x)tttu(x,t)0 u(0,t)u0,limxu(x,0)0,0x解:让未知函数关于tt实施Laplace变换,并且记 L[u(x,t)]0u(x,t)ept~(x,p) dtu于是对原方程和定解条件的两边进行Laplace变换有
~(x,p)d2up~u(x,p)022dxa ~(0,p)u0,limu~(x,p)0upx~(x,p)ce求解知u1xpaxpc2eax,c1,c2得求
~(x,p)0c0 limu2~(0,p)又uu0p,c1u0p
~(x,p)uu0ppaex
pau(x,t)L[1u0pex]u0erfc(x2at)
3:求解杆的振动问题。
utta2uxx(0xl,t0) ( 1)u(0,t)0,Eux(l,t)Asint (2) u(x,0)0,u(x,0)0 (3)t解:让未知函数关于变量t作laplace变换,并且记 L[u(x,t)]0u(x,t)ept~(x,p) dtu2~2~L[utt]pu(x,p)pu(x,0)ut(x,0)pu(x,p)
L[utt]2~du(x,p)dx2
对方程(1)的两边进行Laplace变换有
L[utt]L[auxx]
2~2du(x,p)~ pu(x,p)a2dx22~du(x,p)2即:
dx2(papa2~)u(x,p)0
~(x,p)CeuxDepax (4),其中C,D待求
对边界条件(2)的两边进行laplace变换有:
~(0,p)0 (5) L[u(0,t)]0得uL[Eux(l,t)]L[Asint]得E~(l,p)dudxAL[sint]
即
~(l,p)dudxAEL[sint]A22Ep (6)
~(x,p)cF(p)于是得uaAEF(p)
其中F(p)1p(p)22sh(ch(xalap)
p)sh(xapp)limp0xach(1xap)注意到:limxap0
所以p0是函数Fp的正侧点
Fp只有一阶极点;pi,0,i,pk(k1ai),k0,1 2l容易计算:
sinRes[epiptxa2sintF(p)Res[epiptF(p)]ptcosla
Res[eF(p)]Res[eF(p)]
ppn1ppn1pt16l2(1)n2l2l n1,2,3, 22222(2n1)(4l(2n1)a)sin(2n1)tsin(2n1)tu(x,t)CL[F(p)] xsinsint2aA16lalE2cosan2l2l (1)22222(2n1)[4l(2n1)a]n11sin(2n1)atsin(2n1)t4.求解定解问题:
ua2ucost,(0x,t0) (1)ttxx u(x,0)0,ut(x,0)0 (2)u(0,t)0,limu0 (3)xx解:记Lu(x,t)0u(x,t)ept~(x,p),Lcostdtu0costept~dtf(p)
对方程的两边及初边条件两边进行Laplace变换有
~2~(x,p)d2up~f(p)u(x,p) (4)222dxaa~ u(0,p)0 (5)~(x,p)0 (6)limuxx方程(4)的通解为
~(x,p)ceaceu12pxpax~f(p)a2
由边界条件(6)有c10,所以
~(x,p)ceu2pax~f(p)p2
~f(p)p2又由(5)c2~f(p)p20 c2
~f(p)~u(x,p)2ppxa1e 注意到f(p)Lcost~pp22
~(x,p)u1pp22px1ea11p22pp2x1eap 2而L11pp1221p11L22pp2121costsin22t2
1u(x,t)L2pp211L2pp2epax22sin2t1L22pp12epax 由Laplace变换的位移性质有
LfteL1pF(p)
epF(p)ft
1L2pp12epax2sin22xt 2a当txa时 u(x,t)222sin22t22sin2xt 2a当txa时 u(x,t)2sin22t
5.长为l的均匀细杆,一端保持零度,另一端保持定恒定温度u0,若初始温度也是零,求杆中的温度分布
解:该问题的泛是方程为
uta2uxx 0xl, t0 u(x,0)0u(0,t)u,u(l,t)00~(x,p) 关于变量t作Laplace变换,并见证Lu(x,t)u~(x,p)a则 pu2~du(x,p)2~du(x,p)2dx2
整理即
dxpa2p~u(x,p)0 2apax~(x,p)CeuxDe C,D待求 (1)
~(0,p)u0 (2) Lu(0,t)Lu0 up~(l,p)0 (3) Lu(l,t)L0 u由(1),(2),(3)有
u0CDpplaCeDe
pal0求解得
Ceu0ppalepallu0pepalu0pepap2shal,Deppalealu0paplpealep2shal
~(x,p)uu0epalpp2pshalpaepalu0ealp2pshalshepal
pau0psh11ep2lashpaxlpea(lx)u0p(lx)lpsha
令F(p)1p(lx)lpsha
~(x,p)uF(p) u0u(x,t)L1u0F(p)u0L1F(p)
psh(lx)1au0L
pshla6.试用Laplace变换求解无界弦的受迫振动问题:
utta2uxxf(x,t) x,t0 (1) u(x,0)(x)u(x,0)(x) (2)t解:对时间变量t进行laplace变换,记 Lu(x,t)Lf(x,t)0u(x,t)ept~(x,p) dtu~dtF(x,p)
0f(x,t)ept对方程的两边进行laplace变换有
~dudx2pa22~~(x,p)1p(x)(x)Fu(x,p) (3) 2a利用常数变易法可得其解为
~(x,p)AeupaxBepax12apeax1pepax~pF,pd
12aepax1ppeax~pF,pd
又ux有限
有限
~(x,p)ux代入(4)式有AB0
于是
~(x,p)1u2a12ax1p1pep(x)/a~pF,pd
xep(x)/a~pF,pd
1x1p(x)/ade2apx1pxep(x)/ad
pd
~F,pd
1x1p(x)/aepd2ap1pep(x)/a1x1p(x)/a~F,pde2app(x)/ax1pep(x)/a因为L11pe1,xat1,xat11p(x)/a, Le0,xat0,xatp11p(x)/aLedxpx1pxep(x)/adxatxatd
1p(x)/aed而Lpxp11pep(x)/ad
txatxatda(xat)(xat)
x11p(x)/a~LeF,pdxp1pep(x)/a~F,pd
t0xa(t)f,pdd xa(t)12u(x,t)(xat)(xat)12axatxatd12at0xa(t)f,dd
xa(t)
习题4,3(P238)
1:求下列函数的拉氏变换
(1)f(t)e2t 解:Lf(t)12p0e2teptdt12p0e2ptdt
e2pt0 其中Rep2
(2)f(t)t2tet 解:Lf(t)Ltte2tLtLte2t2!p3Lte
tLte111t0teetptdt10te1ptdt
0p0tde1ptte1pt1p10e1ptdt
1p0e1ptdtp112e1pt01p132
Ltte2t2p3p122p4p2pp32p12
(3)f(t)tcosattsinat 解:Lf(t)LtcosatLtsinat 根据源函数的微分性质
ddpLf(t)Ltf(t)
22dppaLtcosatLcosat2222dpdppapad2
同理Ltsinat2app22a22 Rep0
Lf(t)pa2ap22p2ta22
(4)f(t)esin6t5e2t
解:Lf(t)Le2tsin6t5Le2t Le2tsin6t0e2tsin6te1ptdt
(p2)t0sin6te(p2)tdtp200sin6tde
sin6te(p2)tp26160cos6te(p2)tdt
p220cos6te(p2)t
6p262cos6te(p2)t060sin6te(p2)tdt 36p22016sin6te(p2)tdt06p22p22Le2tsin6t
362t1Lesin6t2p26p22
Le2tsin6t6p4p402Lf(t)Le6p4p40n22tsin6trLe5p22t
25p14p188p24p40p2
(5)f(t)teattnatn1
n1解:Lf(t)LteLte1tLt10neatLt
n1nat00tenateptdttenpatdt
0n1patpantdenpattndepatpann1n0tedt
pan0tn1epatdtpa20tdepat
pa2tn1epat00(n1)tn2epatdt pa2n(n1)0tn2epatdtn(n1)2pa
n0epatdt
n!pan1epat0n!pan1Lf(t)n!pan1(n1)!pn(n1)!npnpan1pan1pn
2.利用性质或查表求下列函数的拉氏逆变换。 (1)解:
p8p26p211111L2LL6L222p4p5(p2)1(p2)1(p2)1p8p4p52
e2tcost6e2tsint
(2)
pp12a22 其中a0
p解:L22pa2tsinat 2a3.利用反三演公式(或展开式)计算下列函数的拉氏逆变换 (1)F(p)1p(pa)(pb)1p(pa)(pb)Ap
解:BpaCpb
比较复数得
A1ab, B1aab, C1bab
L1F(p)1AL111111BLCL ppapb1abaabeat1babebt
(2)F(p)1p22p22
解:Lt1F(p)t111ttLesint*esint 22p11p110e12sinetsin(t)dt0esinsin(t)d
etcostsint
4.试用laplace变换求解下面的问题
yy3e2t(1)
y02解:对方程的两边进行lap lace变换
L[yy]L[3e2t]
2tL[y]L[y]3L[e]
1p21p21p1PL[y]y(0)L[y]3
L[y]3(p1)(p2)11p12t
y(t)L[1p2]L[1]ee
ty4y3yet(2)
y(0)y(0)1解:两边作Laplace变换有
L[y]4L[y]3L[y]L[et]
PL[y]py(0)y(0)4PL[y]y(0)23L[y]1p1
L[y](p4p3)p521p1
L[y]1p4p32(p6p6p12)p6p6(p1)(p3)22(p1)1(p1)(p3)2
1(p1)(p3)12141(p1)(p3)1412212p11(p1)2[11P3]114p3114p11122(p1)y12ete3te3tetL[1]
1414et1414e3t1212L[11p1et1p1]
ettte3tet
ee14tt0e14e3t(t)dtt0eeedtett
yee12te
(3)y2yy4y(0)1,y(0)2,y(0)2
解:两边作Lap lace变换有
L[y]2L[y]L[y]L[4]
pL[y]py(0)py(0)2[pL[y]py(0)y(0)]pL[y]y[0]3224p
即(p32p2p)L[y]p22p22[p2]14p
(p2pp)L[y]324pp524p5pp3
L[y]p5p4p(p2p1)24223p5p4p(p1)4p(p1)2322
1pp(p1)p(p1)22
L[11p]1
L[12p(p1)4]2L[111pp12]2[1*e]2e0tttd2(e1)
tL[1p(p1)2]L[1p(p1)2p(p1)]2(e1)*2(e1)
tt4(et2e2t)
1ttL[4p(p1)2]L[12p(p1)2p1]2(e1)*2e4(ete1)
tttty(t)4(ete1)
tt(4)y2zf(t)yzz0 其中y(0)y(0)0z(0)z(0)0
解:方程两边作Laplace变换有:
L[y]ZL[z]L[f(t)] L[y]L[z]L[z]0即pL[y]y(0)2[pL[z]z(0)]L[f(t)]pL[y]py(0)y(0)[pL[z]pz[0]z[0]22L[z]0
pL[y]2pL[z]L[f(t)]整理即为2 2pL[y](p1)L[z]0求得L[y]p1p(p1)pp12222L[f(t)],L[z]pp12L[f(t)]
z(t)L[1L[f(t)]]costf(t)cosf(t)d
0tyL[1p1p(p1)2L[f(t)]]L[(11p2pp12)L[f(t)]]
L[11pL[f(t)]2pp12L[f(t)]]1f(t)(2)costf(t)
t0f(t)d2cosf(t)d0tt0(12cos)f(t)d
5.求解弹簧振子的受迫振动
mx(t)kx(t)f(t) x(0)0,x(0)0解:两边作Lap lace变换有
mpL[x(t)]KL[x(t)]L[f(t)]
2kL[x(t)]L[f(t)]mp2k1L[f(t)]mp2km1mp(2mkm)2mkL[f(t)]
k1mkp(2mkm)2L[f(t)]
kx(t)1mkL[p(21mkm)2L[f(t)]]1mksinkmtf(t)
1mkt0f()sinkm(t)d
6.求解直流电源的RLC电路方程的初值问题
1(t)Ri(t)LiCi(0)EOLt0i()dEo
解:证L[i(t)]0i(t)ept~dtI(p)
对方程的两边进行Lap lace变换有
E0E01~~~L[pI(p)]RI(p)I(p)
LcppE01~~~LpI(p)ERI(p)I(P)
cpp11~I(p)[LpR]E0(1)
cpp1p~I(p)E0(1)1E0(p1)L(p2LpRRLcpp1LC
)E011~i(t)L[I(p)]L[Lp1p2RLp1LC]
P2RLP1LC4LC(pR22L)(1LCR224L)
讨论:当R2时(1LCR224L)0
i(t)E0LL[p21p1RLp1LC]E0LL[1p1(pR2L)2]
而
p1(pR)2pR2L(1R)2R2L)1pR2L1(p1R2LR2LR2L
)2L[12Lp1R2L)2(p]L[12L1p(pR2LtR2Lt](1R2L)L[1p1pR2LR2L]
e(1R2LR2L)eR2LteR2LeR2Lt(1R2Lt)e0tR2Le(t)d
eR2Lt(1)teR2Lt[1(1R2LR2L)t]eR2L
当R24LC时i(t)E0L[1(1)t]eR2Lt
同理可讨论R24LC及R24LC
7.若F(p)L[f(t)],试证像函数的微分性质
L[(t)f(t)]Fn(n)(p)
证明:由Lap lace变换的意义 F(p)0f(t)eptdt
上式两边对p求等
dF(p)dp0f(t)(t)eptdt0(tf(t))eptdtL[tf(t)]
即F(p)L[(t)f(t)] 如此继续做下去,可得:
F(n)(p)ddpnn0[f(t)ept]dt0(t)f(t)enptdtL[(t)f(t)]
n即L[(t)nf(t)]F(n)(p) [证毕]
8.若F(p)L[f(t)]且F()d(Rep0)收敛,证明像函数的积分性质
pL[f(t)t]pF()d
证明:F()d(f(t)ettdt)df(t)[ettd]dt
pp00f(t)eptdtL[f(t)ott]
p证毕
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo6.cn 版权所有 赣ICP备2024042791号-9
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务